دسته بندی | کامپیوتر و IT |
فرمت فایل | doc |
حجم فایل | 26 کیلو بایت |
تعداد صفحات فایل | 20 |
تحلیل سیستمی پیچیدگی
مقدمه
یکی از وجوه اساسی علم که آن را از هنر و ادبیات متمایز می کند امکان بیان آن به کمک اعداد و کمی کردن آن با استفاده از روابط ریاضی است.این پدیده چنان فراگیر شده است که بسیاری از اوقات کار علمی براساس کیفیت ریاضیات آن سنجیده میشود و نه محتوای تجربهاش. بهکارگیری روابط ریاضی، علاوه بر ایجاد شرایط جدید برای نگرش به پدیدهها (نوآوری)، نوعی سیستم ارزشی برای اندازه گیری و کمی کردن نیز بهوجود می آورد.
نظریة پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است. به همین دلیل نیز برخی از دانشمندان نظریة پیچیدگی را گنگ و مبهم میدانند و آن را شایستة عنوان علم نمیشناسند. نیاز به تکنیکهای جدید ریاضی جهت مواجهه با علوم جدید، موضوع تازهای نیست (ریاضیات نیوتونی و لایبنیتز، توپولوژی پوآنکاره، هندسة غیر اقلیدسی ریمان، آمار بولتزمن و نظریة مجموعههای کانتور). تمام این دیدگاههای جدید در ریاضیات به دلیل نیاز به کمی کردن نظریههای جدید علمی که در آن زمان پا به عرصه وجود گذاشته بودند ابداع شدند.
بهتر است در اینجا نگاهی به اجزای اصلی یک سیستم پیچیده بیندازیم. به طور کلی هر سیستم پیچیده یک سیستم کاملاً عملکردی است که شامل اجزای متغیر و وابسته به هم است. به بیان دیگر، برخلاف یک سیستم کاملاً سنتی (نظیر هواپیما) اجزا دارای ارتباطات دقیقاًٌ تعریف شده و رفتارهای ثابت یا مقادیر ثابت نیستند و عملکردهای انفرادی آنها نیز ممکن است با روشهای سنتی قابل تبیین نباشد. به رغم این ابهام، این سیستمها بخش اعظم جهان ما را تشکیل میدهند و ارگانیسمهای زنده و سیستمهای اجتماعی و حتی بسیاری از سیستمهای غیر ارگانیک طبیعی نیز در زمرة آنها قرار میگیرند.
پیچیدگی ایستا (نوع اول). براساس نظریة پیچیدگی اجزایی که دارای برهم کنشهای بحرانی هستند خود را به گونهای سازمان دهی میکنند که به سوی ساختارهای تکاملی پیش روند و سلسله مراتبی از خصوصیات سیستمهای غالب را ایجاد کنند. در این نظریه سیستمها را باید به صورت یک کل نگریست و برخلاف دیدگاههای سنتی، از تجزیه و ساده سازی آنها پرهیز کرد. به دلیل وجود عوامل غیر خطی در سیستمهای به شدت وابسته به هم، دیدگاههای سنتی قادر به تجزیه و تحلیل نیستند. در اینجا علتها و معلولها قابل تفکیک از هم نیستند و مجموع اجزا برابر با کل نخواهد شد. رویکرد مورد استفاده در نظریة پیچیدگی بر مبنای تکنیکهای جدید ریاضی قرار دارد که سر منشأ آنها را باید در شاخه های مختلف چون فیزیک، زیست شناسی، هوش مصنوعی، سیاست و ارتباطات راه دور جستجو کرد. سادهترین شکل پیچیدگی که معمولاً توسط ریاضی دانان و دانشمندان مورد مطالعه قرار می گیرد، در ارتباط با سیستمهای ثابت است. در اینجا فرض می کنیم که ساختار مورد نظر در طول زمان تغییر نمی کند. به بیان دیگر، به اصطلاح دانشمندان سیستم، با یک تصویر ثابت از سیستم سرو کار داریم. به عنوان مثال، می توان به یک ریز تراشة کامپیوتر نگاه کرد و آن را پیچیده یافت. میتوان آن را با یک مدار الکترونیک مرتبط دانست و برای تعیین پیچیدگی نسبی آن، آن را با سیستمهای جانشین مقایسه کرد (مثلاً از نظر تعداد ترانزیستورها). میتوان همین کار را با اشکال زندة حیات نیز انجام داد و آنها را بر حسب تعداد سلولها، تعداد ژنها و غیره اندازه گیری کرد. تمامی این جنبه های کمی، فاقد مهمترین مسئلة تفکر در پیچیدگی هستند و آن این است که آیا واقعاًٌ پیچیدگی به تعداد اجزا بستگی دارد و چرا پیچیدگی سیستمی مثلاً با 100 جزء متفاوت با سیستم دیگر با همین تعداد اجزاست.
برای نگرشی دقیقتر به این سئوال، نیازمندیم به دنبال الگوها و آمارهای کمیتها باشیم. روشن است که پیچیدگی ترتیبی از 50 توپ سفید و 50 توپ سیاه، از پیچیدگی 5 توپ سیاه، 17 توپ سفید، 3 توپ سیاه، 33 توپ سفید و 42 توپ سیاه کمتر است. با این حال معنای چنین ترتیبی نامشخص است. آیا ترتیب تصادفی است یا معنادار؟ هنگامی که چنین تحلیلهایی به سه بعد تعمیم داده میشوند و بیش از یک مشخصه برای هر جز تعریف میشود (اندازه، چگالی، شکل) پیچیدگیهای احتمالی به نحوه غیر قابل تصوری افزایش می یابند و توانایی ریاضیات موسوم را به چالش فرا میخوانند. در اینجا صرفاً یک سطح مورد نظر قرار داشت ولی در طبیعت سطوح مختلفی از ساختار در تمام سیستمها وجود دارند و این سطوح باعث افزایش پیچیدگی خواهند شد (پیچیدگی یک مولکول، به علاوة سلول، به علاوة ارگانیسم، به علاوة اکوسیستم، به علاوة سیارة زمین و ...). این پدیده باعث میشود تا ریاضیات پیچیدگی ایستا نیز دشوار باشد.
پیچیدگی پویا (نوع دوم). با افزایش بعد چهارم، یعنی زمان، موقعیت بسیار بغرنجتر خواهد شد. از زاویة دید مثبت، شاید تشخیص الگوها با تغییراتشان در زمان ساده تر از حالت سکون آنها باشد (فصول، ضربان). اما از سوی دیگر ممکن است با اجازه دادن به اجزا برای تغییر با زمان، الگوهای حالت سکونی را که قبلاً شناسایی کرده بودیم و طبقه بندیهای انجام گرفته بر پایة آنها از دست بروند (برگها سبز هستند، به جز در پاییز که زرد میشوند و در زمستان که اصلاً وجود ندارند!).
تشخیص عملکرد، یکی از راههای اصلی تحلیل علمی است. پرسش «سیستم چه کاری انجام میدهد؟» و به دنبال آن «چگونه این کار را انجام میدهد؟» هر دو دارای مفهوم حرکت در زمان هستند. با توجه به ضعف ما در بررسی تجربیات تکرارپذیر، مهم خواهد بود که تشخیص دهیم آیا پدیدة مورد مطالعه ایستاست یا آنکه دارای تغییرات دورهای است. علم همواره با آزمایش و تأیید آزمایشها سروکار دارد و پیشنیاز این امر، داشتن نمونههای متعدد است. روابط ریاضی مورد استفاده به گونهای هستند که برای دادههای یکسان، همواره پاسخهای یکسانی را ارائه می کنند و این یک نکتة اساسی در نظریة پیچیدگی است. ما در بسیاری از اوقات ناچار میشویم تا به طور مصنوعی پیچیدگی پدیدة مورد بررسی را کاهش دهیم تا در چارچوب محدودیت فوق قرار گیریم. یک فرد دارای وجوه گوناگونی است ولی، او را با آن دسته از مشخصههایش تعریف می کنیم که در طول زمان بدون تغییر باقی میمانند (و یا قابل پیش بینی هستند) نظیر نام، رنگ پوست، ملّیت یا سن، شغل، قد و مانند آنها. نظریة پیچیدگی نیازمند آن است که سیستم را به صورت یک کل مورد بررسی قرار و از آن تعریفی به دست دهیم که تمامی جنبههای آن را پوشش دهد و در این نقطه است که روشهای سنتی و ریاضی پاسخگو نخواهند بود.
پیچیدگی تکاملی (نوع سوم). یکی از پدیدههای مهم در اطراف ما پدیدههای ارگانیک هستند. بهترین مثالهای مربوط به این پدیدهها، مربوط به نظریة نوین داروین در انتخاب طبیعی است که طی آن سیستمها در طول زمان تکامل پیدا میکنند و سیستمهای دیگری ابداع میشوند (مثلاً یک موجود دریایی تبدیل به یک موجود خشکی میشود). این شکل از تغییر که ظاهراً منتهایی نیز برای آن قابل تصور نیست، بسیار بغرنجتر از آن است که پیش از این انگاشته میشد. میتوان همین مفهوم تغییرات غیردورهای را با مواردی چون سیستمهای ایمنی بدن، آموزش، هنر و کهکشانها نیز توسعه داد. طبقه بندی پیچیدگی، عملاً به معنای برداشتن قدم دیگری، به سوی تاریکی خواهد بود چرا که اگر امکان شمارش مصداقهای آن وجود نداشته باشد چگونه میتوان نام علم را بر آن نهاد؟
پاسخ این سئوال به مبحث الگو باز میگردد. در هر سیستم پیچیده، ترکیبات بسیار زیادی از اجزا میتوانند وجود داشته باشند و در حقیقت میتوان مشاهده کرد که بسیاری از این ترکیبات پیش از این هرگز در طول حیات جهان وقوع پیدا نکردهاند. با بررسی تعداد زیادی از سیستمهای متفاوت، میتوان شباهتها (الگوها) را در آنها تشخیص داد و طبقه بندی هایی را برای تعریف آنها ایجاد کرد. این تکنیکها، که می توان آنها را آماری دانست، بسیار مناسب اند و راهنماییهایی کلی ارائه میکنند، ولی فاقد یک نیازمندی اساسی در کار علمی هستند و آن قابلیت پیشبینی است. در به کارگیری علم (فناوری) ما نیازمند آن هستیم که سیستم را به گونهای طراحی و ایجاد کنیم که وظایف خاصی را به انجام برساند واین یعنی خواستهای که به نظر نمیآید از دیدگاه تکاملی قابل بررسی و تعمیم باشد.
پیچیدگی خود سازمان دهی (نوع چهارم). آخرین شکل سیستم پیچیده، شکلی است که مهمترین و جدیدترین نوع در نظریة پیچیدگی محسوب میشود. در اینجا محدودیتهای داخلی سیستمهای بسته (نظیر ماشینها) با تکامل خلاقانة سیستمهای باز (نظیر مردم) با همدیگر تلفیق میشوند. در این دیدگاه سیستم با محیط خود تکامل می یابد به گونهای که پس از مدتی، دیگر سیستم در طبقه بندی قبلی خود نمیگنجد. در اینجا میبایستی عملکردها و وظایف سیستم به گونهای تعریف شوند که چگونگی ارتباط آنها با جهان وسیع خارج از سیستم مشخص شود. از انواع قبلی سیستمهای گسسته و سیستمهای خود نگهدارنده، به نظر میآید که به مفهومی از پیچیدگی رسیدهایم که نمیتوان آن را از دیگاه کیفی یک سیستم جدا دانست.
عملاً سیستمهای خود تکاملی نظیر بومشناسی و زبان سعی دارند عملکردهای خود را کاملاً با تطابق با محیط شکل دهند و عملاً از این دیدگاه میتوان روش شناسیای را تدوین کرد که طی آن فرایند طراحی از درون سیستم به برون آن سوق داده شود. ما میتوانیم به جای طراحی خود سیستم، محیط آ ن را طراحی کنیم (محدودیتها) واجازه دهیم تا سیستم خود به گونهای تکامل یابد تا پاسخ صحیح را بیابد، نه آنکه پاسخی از طرف ما به سیستم تحمیل شود. این دیدگاه در فناوری ارگانیک، دیدگاهی جدید و نتایج آن در حال حاضر در مهندسی ژنتیک و طراحی مدارها در حال بررسی است.
از دیدگاه نظریة پیچیدگی، بسیار مایل هستیم پیشبینی کنیم کدام حل غالب از بین شقها و محدودیتهای گوناگون رخ خواهد داد.